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SYNOPSIS 

Under quite specific, limiting assumptions, sorption of molecular probes by cylindrical 
fibers can be described by use of the conventional diffusion equation solutions of Hill, 
Newman, Wilson, Crank, Carman-Haul, or Urbanik. In addition, sorption also may be 
described by use of relatively simple empirical equations. Statistical analysis reveals which 
one of three empirical, exponential equations best fits theoretical data generated by use of 
formal solutions to the diffusion equation, and the selected equation is then applied to real 
data. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

Monitoring sorption of molecular probes ( dyes ) by 
cylindrical fibers can provide useful information 
with regard to a fiber’s morphological characteristics. 
Both equilibrium sorption and kinetics of dye uptake 
can help to differentiate important properties be- 
tween fibers that have been subjected to various 
processing conditions. When equilibrium sorption 
is known, kinetics of dye uptake can be estimated 
by use of the classical diffusion equation solutions. 
However certain limiting assumptions must exist 
for these mathematical solutions to be valid. These 
assumptions are 

1. The diffusion coefficient is a constant, con- 
centration independent quantity. 

2. The equilibrium distribution coefficient of 
dye between fiber and the external medium 
is linear for a wide range of concentrations. 

3. The fibers are morphologically stable, ho- 
mogeneous, and uniformly accessible endless 
cylinders. 

4. No surface barrier exists at the cylindrical 
surface that impedes mass transfer of diffu- 
sant from the external medium to the sor- 
bant, i.e., no diffusional boundary layer exists 
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in the external phase and no “skin-core’’ ef- 
fect exists in the fiber. 

When the assumptions listed above are found to 
hold, dye uptake can be estimated by the diffusion 
equation solutions of Wilson, Crank,2 Carman- 
Haul,3 and Urbanik4 for finite bath conditions, i.e., 
conditions of decreasing concentration of dye in the 
external medium and at the fiber surface during the 
course of dye uptake. On the other hand, if sorption 
occurs under infinite bath conditions, i.e., under 
conditions of constant concentration of dye in the 
external medium and at the fiber surface during the 
course of dye uptake, the equations of Hill5 or 
Newman6 are used. The advantage of Newman’s 
equation is that assumption 4 listed above is not 
necessary. 

FINITE BATH EQUATIONS 

Wilson’s Equation 

The classical diffusion equation solution of Wilson 
is 

( 1 )  
a 4a(l + a )  exp(-q:(Dt/r2)) 

- 1 -  2 Mt -- 
Ma n=l 4 + 4ff + a2q; 
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where M,/M, is the fractional equilibrium uptake 
of diffusant by the cylinder, i.e., diffusant uptake at  
a given time, M,, and a t  equilibrium, M ,  . The di- 
mensionless parameter, Dt/r2,  consists of the dif- 
fusion coefficient, D ,  (cm2/s ) ,  the uptake time, t 
( s  ) , and the radius of the cylinder, r (cm) . The alpha 
term is a measure of equilibrium bath exhaustion 

1 - E ,  
I;. 

where equilibrium exhaustion, E ,  , is 

( 3 )  

where Co and C, are, respectively, the initial and 
equilibrium concentration of diffusant in the exter- 
nal medium. Alpha also is expressed by 

R 
K (4) 

where R is the ratio of external medium to fiber vol- 
umes, V m / V f ,  and K is the constant ratio of con- 
centrations of diffusant between fiber and bath a t  
equilibrium, C f / C b .  In eq. (l), the qns are the posi- 
tive, nonzero roots of 

in which Jo and J1 are zero- and first-order Bessel 
functions. 

When bath exhaustion is very high, convergence 
of Wilson’s equation requires an exceedingly high 
number of summation terms for small values of Dt/  
?, and can result in a significant decrease in accu- 
racy due to round-off error. For this reason, the error 
function equations of Crank, Carman-Haul, and 
Urbanik are much more reliable when bath exhaus- 
tion is high and Dt/? is low. 

Crank’s Equation 

Crank’s equation, which was published at the same 
time as was Wilson’s equation, is 

( 6 )  
Mt - 4 ( 1  + a ) ( l  - exp(X2)er fc(X))  

M m  4 + N  
- -  

where erfc is the error function complement, and 
X is 

( 7 )  

Carman and Haul’s Equation 

The equation of Carman and Haul is a slight improve- 
ment over that of Crank for small values of Dt/?: 

exp ( X ’) erfc ( X ) Mt - Y3 

MK Y3 + Y4 

where 

V l + N + l  
Y3 = (9)  

and 

The X and Y terms of the equation of Carman 
and Haul are 

N 

Urbanik’s Equation 

Urbanik‘s equation, although somewhat more complex, 
is an improvement over the equations of Crank and 
Carman-Haul. Urbanik’s equation may be written as 

2(  1 + a )  exp( - BT) 
a ( X -  Y) 

- =  Mt 1 +  
M ,  

[ e x p ( Y 2 T ) e r f c m  
1 - B / Y 2  

- e x p ( X 2 T ) e r f c w T  
1 - B/X2 

X 
X 2 - B  Y 2 - B  

1 X e x p ( B 2 T ) e r f c w T  
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where the constant B is an empirical parameter, 
having a value of 8.42, and the parameter T is D t l  
4. In addition, the parameters X and Yare 

ously listed must be present. This fact can be par- 
ticularly distressing if one is using probe sorption 
as an analytical tool. 

4 + a + v( 4 + a ) 2  + 16a2(B - 1.5 
Y= (15) 4a 

As pointed out e l~ewhere,~ Urbanik’s equation is 
quite valuable because it can be used for essentially 
all values of bath exhaustion and dimensionless 
time-a limitation of the equations of Crank and 
Carman-Haul. 

Many real dyeing systems occur under finite bath 
conditions; however, for such systems, dye uptake 
can be approximated only roughly by the finite dye- 
bath diffusion equation solutions given above. The 
inaccuracies in application of the mathematical so- 
lutions are traceable to the nonexistence of the nec- 
essary assumptions for the appropriate use of such 
equations. It must be recognized that only rarely are 
the assumptions necessary for the use of the finite 
dyebath equations present in the case of real dyeing 
systems. 

If it is one’s purpose to analyze morphological 
characteristics of fibers by use of molecular probes, 
it is wiser to conduct sorption experiments under 
infinite bath conditions. Sorption of dye from a con- 
stant surface concentration is a much simpler sys- 
tem-from an experimental and analytical point of 
view. 

INFINITE BATH EQUATIONS 

Hill’s Equation 

In the absence of surface barrier effects, the equation 
of Hill may be used: 

“ 4  Mt 
M ,  ,,=I P n  

- 1 - 7 exp( -Pf ( D t / r 2 ) )  (16) -- 

where the fins are the positive transcendental Bessel 
roots given by 

An unfortunate limitation of Hill’s infinite bath 
equation is that all of the four assumptions previ- 

Newman’s Equation 

An equation that is superior to Hill’s for analytical 
use is that of Newman. In the case of Newman’s 
equation, the presence of assumption four-the ab- 
sence of surface barrier effects-is not necessary. 
The equation of Newman can be written more con- 
cisely as 

where the Pn’s are the roots of the transcendental 
equation 

in which Jo and J1 again are zero- and first-order 
Bessel functions, and the dimensionless parameter, 
L ,  is defined by’ 

where D, and D are the diffusion coefficients of the 
diffusant in the external medium and polymer, re- 
spectively; K is the equilibrium distribution coeffi- 
cient of the diffusant between the external medium 
and the polymer; r is the radius of the cylinder, and 
6D is the thickness of the diffusional boundary 
layer-a quantity that impedes sorption or desorp- 
tion and is inversely proportional to the rate of flow 
of the external medium past the surface of the poly- 
meric cylinder. When the rate of flow of the external 
medium is very high, the thickness of the diffusional 
boundary layer approaches zero and the value of L 
approaches infinity. As the value of L approaches 
infinity, the term Pz/L2 drops out and eq. (18) be- 
comes equivalent to Hill’s equation. 

Newman’s equation is particularly useful for di- 
agnostic or analytical work. Purified, molecularly 
simple, nonionic probes (disperse dyes) can be used 
on hydrophobic fibers such as nylon, for example, 
to characterize fiber morphology as a function of 
some physico-chemical fiber processing condition. 
The disappearance of the mean  apparent'^'^ diffu- 
sional boundary layer at  the fiber surface as a func- 
tion of increasing bath flow rate through the fiber 
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bundle can be followed by the use of Newman’s 
equation. In fact, the equation may be useful in de- 
tecting the presence of fiber skin-core effects when 
no diffusional boundary layer is present in the ex- 
ternal 

EMPIRICAL APPROXIMATIONS 

Although Newman’s equation is to be preferred for 
analytical investigations of fiber properties and is 
easily handled by those possessing mathematical 
skill on modern, high-speed personal computers, the 
equation is not easily accessible to many researchers 
who are not comfortable with Bessel functions, 
transcendental roots, or iterative computations. 
Empirical approximations often are offered in many 
scientific disciplines in an attempt to circumvent 
the need for a high level of mathematical skill. In 
the present discussion, three exponential equations 
are compared for their efficacy in simulating the 
functional relationship between M J M ,  , Dt/?, and 
L that is found by formal use of Newman’s equation. 
The equations that will be examined are one-, two- 
, and three-parameter exponential equations. 

One Parameter Equation 

The one-parameter equation was first suggested as 
an empirical approximation by Vickerstaf f l3 and is 
written as 

Two-Parameter Equation 

The two-parameter equation has been used by others 
to characterize many different kinds of dynamic 
proce~ses . ’~-~~ Urbanik was among the first to use 
eq. ( 2 2 )  to describe dye uptake.17 The equation can 
expressed as 

- 1 - exp(-a(Dt/r2)b) ( 2 2 )  
Mt 
M a  
-- 

Three-Parameter Equation 

The three-parameter equation is believed to be an 
original exponential equation and was first used by 
the author l8 to express the functional relationship 

between M J M ,  and Dt/? for various values of 
fractional equilibrium exhaustion for finite bath 
systems. The new equation is 

-- Mt - [l - e x p ( - ~ ( D t / r ~ ) ~ ) ] ~  
M ,  

(23)  

The empirical parameter, a ,  is common to all 
three equations; the exponent, b ,  is common to eqs. 
( 2 2 )  and ( 2 3 ) ,  and the exponent, c ,  is a parameter 
for eq. (23)  only. 

Each of the three equations has been fitted to 
data obtained by the use of formal solutions to New- 
man’s equation for an M J M ,  range of 0.05 to 0.95 
at  0.05 intervals and associated values of Dt/? for 
values of L ranging from infinity to 1.0. The “good- 
ness of fit” is expressed as adjusted R2, i.e., the frac- 
tion of the total variability of M,/M, that is “as- 
sociated with or explained by” the variability of Dt/ 
? for given values of L ,  adjusted for the degrees of 
freedom or number of data points. The closer the 
value of adjusted R2 is to 1.0, the better is the fit of 
the given equation to the data points. Results of the 
curve fitting process are given in Table I. 

As revealed in Table I, eq. ( 2 3 )  provides the best 
fit of the three empirical exponential equations to 
the data generated by the formal use of Newman’s 
equation for a very wide range of L values. Only for 
the very low L values does eq. (22)  provide a fit 
nearly as good as that of eq. ( 2 3 ) .  Equation 21 gen- 
erally is inferior to the higher parameter equations 
for all values of L.  

Table I Curve Fitting Results (MJM, vs. Dt/r2) 

Adjusted R2 

00 0.9135 0.9965 0.9999 
10,000 0.9136 0.9966 0.9999 
2,000 0.9142 0.9966 0.9999 
1,000 0.9148 0.9967 0.9999 

200 0.9201 0.9972 0.9999 
100 0.9260 0.9976 0.9999 
80 0.9288 0.9978 0.9999 
50 0.9362 0.9982 0.9998 
40 0.9405 0.9984 0.9998 
30 0.9470 0.9987 0.9998 
20 0.9572 0.9990 0.9998 
10 0.9755 0.9995 0.9999 
5 0.9898 0.9997 0.9999 
2 0.9983 0.9999 0.9999 
1 0.9997 0.9999 0.9999 
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Parameter Values as Function of L 

For eq. (23) to have empirical utility for a wide range 
of L values, it is necessary to express the parameters, 
a, b, and c of the equation as a function of L .  A 
rational polynomial equation has been found that 
expresses the parameter values ( P V )  very accurately 
as a function of L.  For a range of L values from 
infinity to 20, the relationship is given by: 

PV = (24) 
q3 44 
L L  

1+-+, 

where PV is the a, b, or c parameter of eq. (23 ) , and 
qo to q4 are the coefficients of eq. (24). In the case 
of parameter a the coefficient values qo to q4, re- 
spectively are: 5.530554, 160.58898, -1750.616, 
37.494042, and -374.48753. For parameter b the 
coefficients are: 1.2479036, 27.400938, 88.43848, 
33.90477, and 52.505626. Parameter c coefficients 
are: 0.37985136, 12.004462, -6.8204581, 11.003091, 
and 5.3552691. 

For the range of L values from 20 to 1, the following 
three equations accurately express the parameter val- 
ues, a, b, and e of eq. (23) as a function of L. 

a = qo + Ln ($) 
L 

where the coefficients qo, q l ,  q2, and q3, respectively, 
are: 4.098044891, 3.024653177, -2.49630292, and 
-2.59232464. 

where the qo to q3 coefficients are: 1.179748591, 
-0.14496394,0.094386506, and 0.001282442. 

where the qo to q3 coefficients are: 0.916905399, 
0.146475883, -0.08873859, and -0.06737345. 

Linear Form of Eq. (23)  

Data generated by use of Newman’s equation may 
be plotted in linear fashion according to the follow- 
ing form of eq. ( 23 ) : 

A typical plot is illustrated in Figure 1 for an L 
values of 2000. The line slope in Figure 1 defines 
the parameter value b in eq. (23), and the line in- 
tercept I (at  Dt/?  = 1 ) gives the parameter a from 
the following relationship: 

a = exp(I) (29) 

The strength of the linear relationship between 
M J M ,  and Dtl? shown in Figures 1 also holds for 
all other values of L .  Equation 23, therefore, is nearly 
as accurate as the formal equation of Newman and 
can be used with confidence as an analytical tool in 
investigations of fiber morphology. 

ESTIMATING APPARENT DIFFUSION 
COEFFICIENTS 

Equation 23 may be rearranged to a form that per- 
mits the apparent diffusion coefficient, D ,  to be es- 
timated: 

I 

-10’ 1 I , I 
-7 -6 -5 -4 -3 -2 -1 0 

Ln(Dt /r2) 

Figure 1 
and Dt/? as depicted by the linear form of eq. (23). 

Strength of the relationship between MJM, 
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Table I1 Summary of Desorption Data 

Dye Content (g/100 g )  

Time (min) 15 opm 30 opm 90 opm 

0.50 
1 .oo 
2.00 
3.00 
4.00 
5.00 

10.00 
15.00 

1.039 
1.001 
0.898 
0.856 
0.866 
0.678 
0.456 
0.297 

0.815 
0.718 
0.626 
0.511 
0.393 
0.351 
0.148 
0.053 

0.806 
0.714 
0.543 
0.466 
0.393 
0.308 
0.153 
0.074 

In the present investigation, eq. (30)  has been 
used to approximate the apparent diffusion coeffi- 
cient of Disperse Red 11 in stabilized, 40 denier, 13 
filament nylon 66 tricot from desorption experi- 
ments, under conditions of extreme differences in 
dyebath agitation rate. White has shown that Dis- 
perse Red 11 is a useful molecular probe for char- 
acterizing the morphology of polyester fiber that has 
been subjected to various heat-setting tempera- 
t u r e ~ . ~ ~  Part of the utility of Disperse Red 11 as a 
probe dye is found in the dye’s chemical stability, 
molecular simplicity, lack of ionic activity, and rel- 
atively high-water solubility for a disperse dye. Ex- 
perimental technique that was used in securing data 
for the present analysis is given in the sections to 
follow. 

Experimental Technique 

Nylon tricot fabric was stabilized by boiling for 2 h 
in distilled water. One hundred grams of the fabric 
then was dyed for 2 h at 90°C in 2 liters of distilled 
water, containing enough (7.5 g/L)  of a commercial 
dispersion of Disperse Red 11 to reach saturation 
uptake. The fabric was then rinsed in a bath con- 
sisting of 80/20 DMF/water at  room temperature 
until all unfixed surface dye was removed from the 
nylon fibers, as indicated by a rinse bath that was 
free of color. The fabric then was rinsed in distilled 
waster to remove any trace of DMF from the fabric. 
The dye content of the fabric was found by warm 
extraction (95°C) of triplicate fabric samples with 
DMF and was determined to be 1.094 f 0.001 g of 
dye per 100 g of fabric (g/  100 g) , expressed as com- 
mercial dye. 

Five hundred milliliters aqueous baths were pre- 
pared, containing 10 g of activated charcoal, and 
heated to 90°C in a Gaston County skein dyeing 

machine. Activated charcoal was used in an attempt 
to create “infinite sink, infinite bath” conditions that 
would assure that the concentration of dye in the 
bath and at the fiber surface would remain constant 
( zero) during subsequent desorption experiments. 
One gram samples of dyed fabric were attached to 
very thin wire stainless steel sample holders; the 
holders were attached to the oscillating mechanism 
of the dyeing machine, and the samples were entered 
into the desorption bath and treated for different 
times, removed from the desorption baths and placed 
into an ice-water bath to interrupt the desorption 
process. Three different oscillation rates were used 
15, 30, and 90 oscillations per minute (opm) . After 
being treated in the ice-water bath, the samples were 
cleaned of any adhering charcoal and extracted with 
warm (95°C) DMF to determine the dye content as 
a function of desorption t,ime and oscillation rate. 
The resulting data are summarized in Table 11. 
However, in order for eq. ( 30) to be used in analysis 
of the desorption data, the expression, 1 - MJM,, 
(where M,  is the initial concentration of dye in the 
fabric before desorption) , is substituted for M,/M, 
in the equation. Desorption values that are calcu- 
lated by use of the expression are given in Table 111. 

When the data of Table I11 are substituted into 
eq. (30),  along with the value of the fiber radius 
squared ( r 2  = 9.43-7 cm’), the apparent diffusion 
coefficient (cm2/s) can be estimated for each value 
of time and oscillation rate. However, there is an 
unfortunate amount of experimental variation in the 
desorption data, leading to uncertainty in the com- 
putation of not only the diffusion coefficient, but 
also the L value associated with each oscillation rate. 
The “best estimate” of the diffusion coefficient and 
corresponding L values can be made by use of a 
technique proposed e l ~ e w h e r e . ~ ~ ~ ~  

Table I11 Summary of Desorption Data 

1 - MJMO 

Time (min) 15 opm 30 opm 90 opm 

0.50 
1.00 
2.00 
3.00 
4.00 
5.00 

10.00 
15.00 

0.050 
0.085 
0.179 
0.218 
0.208 
0.380 
0.583 
0.729 

0.255 
0.344 
0.428 
0.533 
0.641 
0.679 
0.865 
0.952 

0.263 
0.347 
0.504 
0.574 
0.641 
0.719 
0.860 
0.932 
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The proposed method consists of calculating the 
diffusion coefficient for each value of time, using eq. 
(30) for different values of L and determining the 
resulting coefficient of variation of the diffusion 
coefficient. When an L value is found that results 
in the minimum coefficient of variation ( %  CV), 
that L value and the mean diffusion coefficient are 
accepted as the “best estimates.” Although the 
technique is tedious, the method is satisfactory for 
the analysis of uncertain data that often result from 
either sorption of desorption experiments. Results 
of the use of the technique are given in Table IV. 

The approximate L values and apparent diffusion 
coefficients that were determined for each desorption 
bath oscillation rate by use of the % CV minimi- 
zation technique are shown in Table IV. It is note- 
worthy that the % CV value decreases as bath os- 
cillation rate increases. In view of the wide scatter 
of data points and the uncertainty with regard to 
the uniformity of accessibility of the fiber surfaces 
in the yarn bundles of the tricot fabric, it is quite 
significant that the mean apparent diffusion coef- 
ficients are statistically equal for the range of oscil- 
lation rates and resulting apparent L values. 

The experimental data are plotted according to 
Newman’s equation in Figure 2, using the mean 
value of the diffusion coefficient for each value of L.  
As revealed in the plot, when 1 - M J M ,  is plotted 
vs. the square root of time, an intercept on the root 
time axis is detected for the lowest value of L.  This 
behavior is typical for systems in which a surface 
barrier exists in either the bath or the fiber. 

It is important to note that since an L value of 
infinity is found for the highest oscillation rate, no 
skin-core effect is detected for the nylon fiber at  

Table IV Estimated Diffusion Coefficients 

cm’/s x lo-” 

15 opm 30 opm 90 opm 
Time (min) ( L  = 2) ( L  = 80) ( L =  a) 

0.50 4.72 5.38 4.81 
1 .oo 4.17 4.89 4.38 
2.00 5.06 3.84 5.03 
3.00 4.29 4.11 4.56 
4.00 3.04 4.75 4.50 
5.00 5.31 4.39 4.89 

10.00 5.06 4.63 4.34 
15.00 5.14 5.08 4.20 
Mean 4.60 4.63 4.59 
% cv 16.33 10.94 6.38 

” 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Square Root of Time (min ”* ) 

Figure 2 Desorption of Disperse Red 11 into an infinite 
sink, when plotted according to Newman’s equation. The 
dotted line represents the theoretical line for desorption 
for an L value of 80 and is nearly superimposed on the 
theoretical line for an L value of infinity. When the linear 
portion of the theoretical line for desorption for an L value 
of 2 is extrapolated to zero desorption, an intercept on the 
root time axis occurs. 

hand. If the value of L had not increased very much 
as the oscillation rate of the bath increased, an ar- 
gument could be made that the effect was caused by 
a barrier that existed in the fiber surface-rather 
than in the bath itself. 

CONCLUDING REMARKS 

In view of the tremendous power and speed of mod- 
ern personal computers, it is ironic that these in- 
struments are not utilized more often in solving 
complex problems of molecular probe sorption and 
desorption by the use conventional diffusion equa- 
tion solutions or by finite difference approximations. 
Perhaps the answer is to be found through new, spe- 
cialized computer programs that address diffusion 
problems in detail. However, until such programs 
become available, it is believed that analysis of fiber 
morphology by use of molecular probes can be made 
more convenient for the researcher by substitution 
of mathematically simple empirical equations for the 
more complex, formal diffusion equations. 
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